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ON THE PROPAGATION OF SMALL PERTURBATIONS IN TWO SIMPLE

AEROELASTIC SYSTEMS*

ANGELO IOLLO t AND MANUEL D. SALAS t

Abstract. In this paper we investigate the wavc propagation pattcrns for two simple flow-structure

problems. Wc focus on the study of the propagation speeds of the waves in the fluid and in the structure, as

the rigidity of the structure and the Mach number of the undisturbed flow are changing. Some implications

concerning the sound emission by inhomogcncitics eventually present in the structure are discussed.
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1. Introduction. The motivations for this study are twofold. On thc one hand we wanted to study

the effects of the mean flow on the acoustic-waves speed, in the presence of a coupling with a structural

element bounding the fluid. On the other hand, since the energy of a perturbation is partitioned between

fluid and structure according to its speed, wc were interested in investigating how the Mach number of the

undisturbed flow may affect the noise scattered at inhomogcneities by the structure.

In classical papers on aeroclastic interactions, the timc evolution of small perturbations is studied [4].

The stability boundaries arc determined as functions of a speed parameter (the ratio of the wave velocity

in the panel in absence of coupling and the wave length of the disturbance). It is also found that a panel

characterized elastically by flexural forces only is unstable at any finite airspeed for sufficiently large wave

lengths, whereas the introduction of membrane tension will lead to instability only for airspeeds grater than

to the minimum wave velocity of the panel. More recently the same problem was studied from another view

point, the interest being the scattering of a bending wave by an inhomogencity in an otherwise homogeneous

and infinite panel immersed in a fluid at rest [3]. Given a certain frequency of the perturbation, the dispersion

relation of the coupled system is studied in terms of the wavc number, whereas in the study of stability, a

frequency analysis was preferred in order to detect the cventuM tim_wise growth of the propagating wave.

The study of the dispersion relation for a homogeneous beam is a preliminary step in analyzing the

behavior of the air-beam system in the presence of inhomogeneitics. In fact, the effect of gaps, stiffeners et

cetera, is accounted by the presence, in the right hand side of the beam equation, of a linear combination of

the Dirac function and its derivatives. The right hand side of the beam equation amounts to a forcing on

the systcm whose response is, in the Fourier space, the ratio between the Fourier transform of the forcing

term and the Fourier transform of thc dispersion rclation. Therefore, in the physical space, the solution is

governed by the polcs of such ratio, which are in turn the zeros of the dispersion relation.

In what follows wc first studied a simple one-dimensional configuration in which the Mach number plays

a role only on the stability bounds, while in the two-dimensional case the Mach number has an important

effect on the solution of the dispersion relation, allowing or not certain waves to appear. Thc one-dimensional
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case, however, has tile merit of showing clearly the influence of the fluid-structure coupling on the speed of

the propagating waves. We may anticipate that for low values of the stiffness, the propagation speeds in the

beam and in the fluid are remarkably different from those in the uncoupled case.

2. Quasi One-Dimensional Coupling. We study the flow of a compressible fluid through a nozzle

with elastic walls. The nozzle walls are loaded by the pressure difference between an outsidc ambient pressure

and the local internal fluid pressure. The flow is assumed to bc quasi one-dimensional, inviscid and isentropic.

Under these hypothesis the non-dimensional equations governing the flow arc the following

(2.1) 2 2
7-1 ct + c u_ + 7 - T cx u + -_ (H_"+ u Hx ) 0

2
(2.2) u_+uu_ +-- ccz=O

where c is the local speed of sound, u is the velocity of the fluid, H the nozzle hight and _ the specific heats

ratio.

In addition, we assume that the deformation of the walls of the nozzle arc so small that the motion is

governed by the linear beam equation

(2.3) m Htt+ D H_xzx = Pi - Po

where D is the bending stiffness, Pi the local pressure of the fluid, p0 is the outside ambient pressure and rn

thc linear mass of the wails that is 1 in what follows.

The coupling between the quasi one-dimensional fluid equation and the beam equation, which is due to

the pressure difference on the right hand side of eq. 2.3, is interesting because of the different nature of the

partial differential equations (PDEs) governing the fluid and the nozzle wall motion. If we consider only the

fluid, we have a hyperbolic system of PDEs representing signals that propagate on two characteristics with

speeds u ± e. The perturbations are felt in the fluid only after a finite time, needed for the perturbation to

propagate from the source to the receiver. On the other hand, the linear beam equation is parabolic, i.e.,

perturbations are immediately felt all along the beam, although the phenomena is still evolving in time. In

fact, from the dispersion relation of this PDE we have two waves traveling with spceds ±v/D k and two near

fields [1].

The coupled system is parabolic, but the traveling waves of each uncoupled system play an important

role for what concerns the stability of the solution and the partition of the energy of the perturbations

between the fluid and the nozzle walls.

Let us considcr a nozzle with straight walls at t = 0 and with an inlet Mach number Mo. We want to

study the evolution of small perturbations for this system. Take c = co + c', u = u0 + u' and H = H0 + H'

and substitute in eqs. 2.1- 2.2 and 2.3. Assuming that P0 = P0 = 1, that the primc quantities are small, and

dropping the prime notation, we obtain the following system for the perturbations

(2.4) 2 2 co
7 -1ct + co u_ + 7 -1u° cx + Hoo ( Ht + uo Hx ) 0

2
(2.5) u_ + u0 u_ - -- co c_ = 0

7-1
__L_I

7-1 co c 0

This system of PDEs governs the evolution of small disturbances in a nozzle with parallel elastic walls.

Assuming that the solution has the form

(2.7) c = _e _ (k _-_)



(2.8) u = fie i (k x-,ot)

(2.9) H =/2/e i (k _-,,t)

we substitute in eqs. 2.4-2.6 to get

2 cok
(2.10) _ -

_/-1 w-uok
1

(2.11) /2/____2 - d
,_ - 1 Co D k 4 - w 2

(2.12) (w-u0k) 2 I+ Ho(Dk 4-w 2) -c_k 2=0

Note that as D --* oc or k --* o_ thc system becomes increasingly uncoupled, i.e., the evolution of the

perturbations in the beam arc less and less influenced by thc presence of the fluid and vice versa.

For given wave number k, we may solve eq. 2.12 with respect to w. When Irn(w) # 0 the corresponding

mode of oscillation is unstable. Figure 2.1 shows a plot of Re(w/k) with respect to D when M0 = 0. The

four solutions arc obviously real and symmetric with respect to the abscissa. No unstable solution is possible

since there is no forcing on the systcm.
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FIG. 2.1. Solutions of the dispersion relation for a quasi one-dimensional coupling, co = v/iA, Mo = O, k = 7r and

qr = Re(w/k). The branches of the solution are named a, b, c, d from top to bottom.

The four solutions represent waves which travel in the positive and negative direction of the x-axis.

They correspond to the waves present in each of the uncoupled systems which have speeds/=co and +vrD k.

Solutions b and c go to 0 when the stiffness is zero (no wall separating the ambient and internal flow),

while the waves corresponding to solutions a and d have speeds equal to that of the signals in the fluid +co.

For increasing stiffness the solutions gradually shift role. For example, the solutions that are 0 for D = 0

asymptotically approach the value of +c0 when the system becomes uncoupled, i.e., for D -* oc. Converscly,

a and d approach the curves w/k = -t-_k as D --_ oc.



The partition of the energy of the perturbations between beam and fluid depends on the phase speed

o,,/k, of the wave considered. It is seen from eq. 2.11 that for a given amplitude _, if the speed of the wave

considered is close to _=v_ k then [/--_ o_. This means that when the speed of a wave in the coupled system

is close to the speed of a wave present, for example, in an isolated beam, the energy of tile perturbation is

mainly concentrated in the beam. Similar arguments can be made for waves whose energy is mainly in the

fluid.

qr

1.5

1

0.5

0.5

1

_"-_. 02 0.04 0.06 0.08 0.1

i)

qi

0.4

0,2

o.6o_ o.6o2 0.603 ......-.._.oo4 D

ii)

FIG. 2.2. Solutions of the dispersion relation for a quasi one-dimensional coupling, co = _/_, Mo = 0.5, k = lr i)

qr = Re(w/k), ii) qr = Ira(w/k) . The branches of the solution are named a, b, c, d from top to bottom of figure i).

In fig. 2.2, wc illustrate the case corresponding to M0 -- 0.5. Now we find that there is a range of values

of D where Im(w/k) _ 0 for the solutions b and c. The existence of this region indicates that unstable motion

can bc triggered by small disturbances with given wave number. Note that Im(w/k) 5/=0 corresponds to the



small region in fig. 2.2 where the branches b and c collapse into one curve, i.e., the speed of propagation

of the two waves is the same. This is necessarily the case since the dispersion relation is a fourth order

polynomial in _. Note also that the solutions b and c have asymptotes co (0.5 ± 1.0).

Because the unstable modes arc associated with the collapsed branches b and c, wc can conclude that

their energy is mostly in the beam. Interestingly, there is a range of values for the stiffness for which the

unstable modes can propagate only in the positive direction.

2.1. Computational experiment. Wc considered a simply supported beam of unit length which is

in contact with a fluid at rest governed by eqs. 2.1-2.2 on one side, and to a constant ambient pressure

equal to that of the unperturbed fluid on the other side. We took a simply supported beam so that there

are no near fields generated at the boundaries [1]. The flow takes place between the elastic beam and a

rigid wall. This elastic "hose" connects two reservoirs whose pressure is kept constant and equal to that

of thc unperturbed flow in the hose. Therefore, the boundary points arc nodal points for the pressure and

displacement waves as well. When the beam is displaced from its equilibrium position it will perform frec

periodic oscillations corresponding to a superposition of the modes excited by the initial condition. There is

no dissipative external force acting on the system and the system is conservative.

The beam equation was solved by mean of a scmi-discretization based on a Galcrkin projection of the

solution on the eigenmodes of an isolated simply supported beam. This results in the solution of a set of

ordinary differential equations (ODEs) for each mode taken into account. The ODEs arc then integrated

in time by means of a standard fourth order Runge-Kutta scheme. Besides providing high resolution, this

approach allows us to control very closely the modcs of the coupled system excited by the initial condition

which drives the system out of equilibrium. The given initial condition is the beam displacement. In

particular, we displace the beam so that only the first mode of oscillation has non-null amplitude, i.e.,

H(x, O) = h sin n x with small h. Thus, we are able to impose the wave number of the free oscillations in

order to compare the frequencies resulting from the simulation with that computed by eq. 2.12. Other modes

of oscillation have amplitudes of much lower order compared to that excited.

The fluid equations are discrctized by a finite-volume scheme where the fluxes at the volume interfaces

are computed as in [5]. Higher order accuracy is achieved by means of an ENO algorithm, see [2]. The

number of computational volumes used to discrctizc the flow equations is 1000, so that the accuracy of the

results is of the order of 10 -6. The computations where run in double precision.

In fig. 2.3 wc plot the Mach number at the inlet of the nozzle versus time. It is seen that two frequencies

of oscillation arc present. Because of the set up of the experiment, the perturbation is not traveling, but

forming a standing wave in the nozzle (standing waves comprise traveling waves in both directions). The

two frequencies of fig. 2.1 are the ones found in this experiment. In particular it was verified that the periods

T = 2_/r computed by cq. 2.12 with D = 0.001 (1.61,21.1) are to a good approximation equal to those

obtained with the numerical simulation (1.64,21.7).

3. Two-Dimensional Coupling. Let us consider a two-dimensional case in which the equation gov-

erning the flow is the linear potential equation

1 (2 U0¢_t + _) = 0(3.1) (1- + -

where (_, (I)u) -- (u, v) arc the components of the flow velocity vector, (U0, 0) and co are, respectively, the

velocity and speed of sound of the unperturbed flow, and M0 -- Uo/co.
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FIG. 2.3. Mach number versus time at nozzle inlet. D = 0.001 and k = 7r.

Consider an infinitely long flexible surface separating two regions of the flow. On this surface the

boundary condition on the flow is given by the equation

(3.2) (I)u = Pit + Uo H_

where H is the distance of the flexible surface to the x-axis. In addition the potential (I) is required to vanish

in the far field.

In the idealized system that we want to study we assume that the infinite surface is elastic and satisfies

the linear small perturbation, beam equation

(3.3) Htt+ DHz=zz = [p] = 2p0 ((I)t + U0 (I)z)

where Po is the fluid density of the unperturbed flow and [p] is the pressure jump across the wall. For sim-

plicity, we are assuming that the flexible surface is wetted by the fluid on both sides. The case corresponding

to a flow at rest on one side leads to more complex algebraic manipulations, but the conclusions would not

be altered.

Equations 3.1-3.3 form a coupled system. The coupling comes about through the aerodynamic load on

the moving surface (beam) and the boundary condition, cq. 3.2.

We limit our study to such a hncar model since we arc interested in studying how the coupling affects

the propagation of small amplitude waves. To do that, we take

(3.4) =  exp [i (klx + k2y-

(3.5) H = [/exp [i (klx - wt)]

and we substitute these expressions in eqs. 3.1-3.3. The angular velocity w is supposed to bca real number.

Therefore, we consider waves whose amplitude are not diverging or decaying in time.



Solvingfork2 in eq. 3.1 we obtain

(3.6) k2 -- - M0 kl - k_

Note that to have a finite amplitude wave for large y and to ensure the radiation condition, i.e., outgoing

waves in the far field, k2 is either a positive imaginary or a positive real:

(3.7) k2 E iR + or k2 E R +

These conditions arc a very important discriminant for admitting or not certain solutions and we will make

use of them later.

From eq. 3.2, we have

(3.8) ,_ _ w - Uo kl [t
k2

and from cq. 3.3 we obtain

(3.9) (Ok 4 - w 2)/:/= - 2poi(w - Uo kl )

Substituting eqs. 3.6 and 3.8 into eq. 3.3, and making use of eqs. 3.4 and 3.5 we obtain the dispersion relation

for the coupled aeroclastic system.

The dispersion relation is nondimensionalized with respect to Ko = (w2/D) 1/4 which is the wave number

of the small pcrturbations traveling in the beam when there is no coupling with the fluid. Introducing also

ko = w/co, # = ko/Ko, K = kl/Ko and u = 2po/Ko, the dispersion relation is written

iu
(3.10) g 4 - 1 --

v/(u - M0 K) 2 - K 2

The parameter # has a physical meaning similar to that of the Mach number: it is the ratio between the

speed of the perturbations in the beam to that in air when there is no coupling.

This equation relates the wave numbers and the frequencies of the small amplitude waves which can

propagate in the coupled acroclastic system. In the case of M0 = 0 thc above equation reduces to

/J
(3.11) K 4 - 1 ---

V_ _ p2

which is identical to the dispcrsion relation obtained in [3], cq. 3.9, for a case with zero mean flow. Notice

that k2/Ko = V/(# - Mo K) 2 - K 2 which is the denominator of the right hand side of eq. 3.10.

Let us consider now the uncoupled system, where the beam vibration is not affecting the perturbations

in the fluid and vice versa. In this case, the nondimensional dispersion relation is

(3.12) K_ - 1 = 0

with solutions

(3.13) Kb ----:i:1, :t:i

The solutions Kb = :k I correspond to wavc motion in thc positive and negative directions of the x-axis. The

solutions Kb = :ki represent near ficlds generated close to some boundary, these are used to accommodate

the boundary conditions if present.



In thefluid,theacousticwavespropagatingin thex dircction have speed o;//k/= Uo =i: co, from which

we can compute the dimensionless wave numbcr

P
(3.14) K/- M0 + 1

If we assume that the solutions of the coupled system are not very far from those of the uncoupled

system eqs. 3.13 and 3.14, we can make cq. 3.10 approximately solvable in closed form. Consider first thc

roots K _ _=1 and the case ]# =i=M01 < 1, after substituting in the right hand side of cq. 3.10 we havc

V

(3.15) g 4 - 1 =
- (p T M0)2

where we took into account the conditions 3.7. To the same order of approximation the solution of the above

equation can be written

v
K=I+

4 - (p T M0) 
(3.16)

Similarly [p =t=M0[ > 1, we have

(3.17)
iv

K=I+
4 T M0)2 - 1

These waves arc cquivalcnt to the waves that in a isolated beam travel from -oc to +c_ without attenuation.

In the coupled case, depending on p + M0, wc have two different behaviors. For ]p i M01 < 1, the wave

numbcr in the direction of x-axis is real, while k2/Ko c iR +, i.e., the wave is decaying in the direction of

the y-axis, and therefore, since there is no energy radiated away, it propagates without attenuation in the

direction of the x-axis.

When IP + M0t > 1, K has a non zero imaginary part. The wave number in the direction of the y-axis is

real, i.e., energy is radiated away from the vibrating beam and therefore the wave is decaying as it propagates

along tile beam.

The equivalent of thc near fields cxisting in the uncouplcd beam are found when K _ _=i

(3.18) K=:ki (1+ iv )

which is valid for any value of p + M0, therefore the type of solution found for the coupled aeroclastic system

is basically the same as for the near fields corresponding to M0 := 0.

The solutions corresponding to the acoustic waves arc founc., rewriting eq. 3.10 as

iu
(3.19) V/(p - Mo K) 2 - K 2 - Ka _ 1

then assuming K _ p/(Mo :J: 1), wc have

(3.20) i( p - Mo _)2- K 2 _ i__uv4
(:_0±1) -1

The above equation has acceptable solutions, in the sense of the conditions 3.7, if and only if]g/(Mo :i: 1)[ > 1

which is equivalent to IP :t: Mol > 1. In this case the solutions are

(3.21) K - P + v M0 + 1
W(_.a__4 _ 1] p[(1 - M02) + M0p]

M0 =i=1 2 [_Mo±l/ J



which are real numbers and therefore the waves travel without attenuation. The correspondent wave number

in the direction of the y-axis is a pure imaginary, so there is no radiation of energy to infinity. These waves

are the equivalent of the acoustic waves in the fluid for the uncoupled system.

It should bc noted that there arc as many different kinds of waves as there are different systems interact-

ing, and that the particular wave with its velocity near that of one of the component systems will entrust its

energy chiefly to that component. This can be seen by substituting the solutions of the dispersion relations

into eq. 3.8, or eq. 3.9, and solving for the ratio of the amplitudes.

Compared to the case in which M0 = 0, there is a reacher variety of solutions available, according to

the inequality satisfied by # + M0. In fact depending on the direction wc consider, wc may have either

p 4- M0 > 1 or -# 4- M0 < 1. In this case for example, the last pair of solutions obtained would propagate

only in the positive direction of the x-axis.

This result is reasonable if we consider that what is important is the relative motion of the fluid with

respect to the waves traveling in the bcam, in this sense, it is interesting to compare to the results in [3]

where a similar analysis is donc for M0 -- 0. In this case it is known that waves propagating in the beam in

the x dircction radiate energy in the y direction only if the wave is supersonic, i.e., I#1 > 1. Whcn M0 _ 0,

wc take a frame of reference at rest with respect to the fluid. In the relative motion, the speed of the wave

in the beam is p 4- M0.

Why these results are relevant to the noise emission from a rib stiffener? Intuitively it is clear that when

the wave energy is mostly into the fluid, very little energy is scattered at the stiffener, while if the wave

energy is mostly concentrated in the beam, the noise emission will be higher. This argument can be made

rigorous if we consider that the cigcnvalucs of the frec acroclastic system become the poles of the transfcr

function for the forced system constituted by the fluid, the beam and the stiffener. The number and the

position of these poles in the complex plane now are function not only of # but of M0 as well. Therefore the

emission of noise as a function of #, as for example presented in [3], dcpcnds now on the free stream Mach

number.
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